
Efficient and Secure Group Key Management in IoT using
Multistage Interconnected PUF

ABSTRACT
Secure group-oriented communication is crucial to a wide
range of applications in Internet of Things (IoT). Security
problems related to group-oriented communications in IoT-
based applications placed in a privacy-sensitive environment
have become a major concern along with the development
of the technology. Unfortunately, many IoT devices are de-
signed to be portable and light-weight; thus, their function-
alities, including security modules, are heavily constrained
by the limited energy resources (e.g., battery capacity). To
address these problems, we propose a group key manage-
ment scheme based on a novel PUF design: multistage in-
terconnected physically unclonable function (MIPUF) to se-
cure group communications in an energy-constrained envi-
ronment. Our design is capable of performing key man-
agement tasks such as key distribution, key storage and
rekeying securely and efficiently. We show that our design
is secure against multiple attack methods and our experi-
mental results show that our design saves 47.33% of global
energy comparing to state-of-the-art Elliptic-curve cryptog-
raphy (ECC)-based key management scheme on average.

1. INTRODUCTION
Internet of Things (IoT) has been envisioned to be a revo-

lutionary network that connects physical devices around us
to perform intelligent tasks such as monitoring, communi-
cation, operation, and optimization. The advancement in
IoT technology has enabled a wide spectrum of applications
in a variety of environments, including but not limited to
homes, factories, hospitals or city streets. While IoT tech-
nology has greatly improved the efficiency and quality of our
lives and works, various security challenges have become a
major concern and doubt for further adoption of the tech-
nology. Security improvement in IoT system has become an
increasingly popular topic in both academia and industry
due to its urgency and profitability. In this paper, we are
particularly interested in efficient and secure key manage-
ment schemes in group communications in an IoT setting.

Group communication through multicast/broadcast en-
ables direct communication with the whole group, which
is more efficient when compared to an equivalent unicast-
based solution. Securing group communications consists of
providing confidentiality, authenticity, and integrity of mes-
sages exchanged within the group [1]. Among all security
problems in IoT, group key management is one of the fun-
damentals in securing group communications. A group key
essentially is a secret key shared by all members of a group so
that all group communication packages are encrypted before

they are being transmitted using this group key. An unau-
thorized user may receive group communication packages
due to network error or intentional interception, however,
without the right group key, the illegal user cannot decrypt
the received packages.

Group key management schemes in IP networks, though
have been studied for decades, cannot be directly applied
to IoT as IoT devices are heavily constrained by the lim-
ited resource and energy capacity. Limited resources impose
new challenges regarding storage and computation require-
ments, meaning each node is incapable of storing a large key
database or conduct heavy cryptographic computation. The
energy constraint additionally requires key verification and
computation procedures to be energy efficient.

For the above two reasons, physically unclonable functions
(PUFs), a type of low-power security primitive with unclon-
able and unpredictable properties, naturally appears as an
ideal solution to the problem. In this paper, we propose to
apply a novel low power PUF structure called Multistage
Interconnected PUF (MIPUF) to the domain of group key
management in IoT. We believe the low power and unclon-
able, unpredictable nature of MIPUF not only improves the
security of group key management protocols but also meet
the tighter energy requirements on IoT nodes. Our design
of interconnection reconfiguration in MIPUF is robust and
secure against modeling attacks by changing the challenge-
response mapping. The group key is stored and managed by
a new set of PUF functions every time we reconfigure the
MIPUF in every IoT device, creating an additional layer of
security and protection. We also show that our key man-
agement scheme including key distribution, key storage and
rekeying is resilient against a wide range of attacks. Lastly,
we show that our group key management protocol is power
and energy efficient. Our simulation results show that we are
47.33% more energy efficient comparing to state-of-the-art
ECC-based key management schemes.

2. RELATED WORK
Several efforts have been made in creating efficient group

key management protocols for group communications in IoT
and wireless sensor networks (WSN) to meet the energy and
computation constraints. Notably, Zhu et al. proposed an
efficient security mechanism for large-scale distributed sen-
sor networks [2]. Roman et al. analyzed the applicability of
public-key cryptography based protocols and link-layer ori-
ented key management systems (KMS) in IoT settings [3].
Abdallah et al. proposed a novel efficient and scalable key
management mechanism for wireless sensor networks and

1

proposed to reduce power and energy consumption by using
ECC [4]. All work listed above utilizes expensive crypto-
graphic primitives to secure their group key management
protocols without investigating the possibility of utilizing
some novel low-power hardware security primitives to meet
the energy requirements.

Recently, PUFs, as a popular type of low-power security
primitive, have been proposed to be used in a number of key
management subtasks in IoT settings. Rahman et al. pro-
posed to use PUFs for secure key generation [5]; Mukhopad-
hyay proposed a novel device authentication method that
takes the advantage of the unclonable property of PUFs [6].
Most recently Huang et al. investigated a key distribution
protocol assisted using ring oscillator PUFs (ROPUFs)[7]
which significantly reduces the storage overhead and latency
for securely distributing secret keys. Unfortunately, these
works only focus on a specific subtask of key management
and fail to provide detailed security or overhead analysis. We
differentiate ourselves by design a novel PUF architecture
that can be applied to the entire key management lifecycle
including key distribution, key storage and rekeying in IoT.
We have also performed a security and overhead analysis to
prove that our work is both secure and efficient.

3. MULTISTAGE INTERCONNECTED PUF
In this section, we propose a novel PUF structure called

Multistage Interconnected PUF (MIPUF). We borrow the
idea of multistage interconnection networks (MINs) from
computer networks field. MINs allow the processing ele-
ments (PEs) to be interconnected using Switching Elements
(SEs) such that the interconnection provides high config-
urability and speed with low cost. We propose to use such
structure to interconnect PUFs so that the interconnected
PUFs can be configured easily. The interconnected PUFs
significantly increase the system complexity as well as break
the linearity, resulting in increased difficulty in modeling
the system. The configurability also allows the challenge-
response pairs (CRPs) of the network to be remapped from
time to time, protecting the system from modeling attacks.

3.1 Processing Elements (PEs)
We name the PE in a MIPUF a MIPUF node. A MUPUF

node is the most fundamental building block of the network.
A MIPUF node is a single or a group of strong PUFs that
take an n-bit challenge and generate an m-bit response. A
strong PUF is defined as a PUF that supports a large num-
ber of CRPs [8], and existing implementation of strong PUFs
include but is not limited to PUFs such as optical PUF,
arbiter PUF and LRR-DPUF [9]. For the sake of imple-
mentation easiness, our implementation of a MIPUF node
consists of m n-bit arbiter PUFs running in parallel and
sharing the same pulse signal and challenge vector. Even
though arbiter PUFs are known to be weak against various
modeling attack, our experimental results show that mul-
tistage interconnection significantly improves the resilience
against them. In this paper, we merely use MIPUF node
implemented with arbiter PUFs as an illustrative example
and a proof of concept. Security properties of MIPUF im-
plemented using more advanced strong PUFs such as LRR-
DPUF [9] are expected to exceed our collected results.

3.2 Switching Elements (SEs)

Similar to the concept of SEs in computer networks, the
SE in MIPUF serves as a way to route and switch signals.
In our implementation, an SE is a set of multiplexers that
switch or not switch n signals based on a configuration bit.
In our case, we use SEs to connect the response of a previous
MIPUF node to the next node as the new challenge. The
SEs between two nodes are controlled by a configuration
vector.

3.3 Multistage Interconnection
Multistage interconnection networks find a balance be-

tween the cost and configurability. We believe a blocking
multistage connection is the most cost-efficient for MIPUF
implementation and provides sufficient configurability. A
blocking multistage connection cannot realize all possible
connections between inputs and outputs since a connection
between one free input to another free output is blocked by
an existing connection in a network; however, it is much
cheaper to implement. We propose to implement a blocking
interconnection in a MIPUF in an Omega network style [10]
which consists of 2×2 SEs. Each input has a dedicated con-
nection to an output, providing 2N different switchings and
having a complexity of O(N log(N)) for an N×N connection
between two MIPUF nodes. An example of such intercon-
nection is shown in Figure 1. To be noted that we do not
allow port rearrangement in MIPUF, each input should be
routed to a unique output and each output should be di-
rected from a unique input given a specific configuration.

SE SE SE

SE SE SE

SE SE SE

SE SE SE

0 1 0
r7i-1
r6i-1

r5i-1
r4i-1

r3i-1
r2i-1

r1i-1
r0i-1

c7i
c6i

c5i
c4i

c3i
c2i

c1i
c0i

Figure 1: Network structure in Omega network style. rki−1

indicates the k-th response (output) bit of the (i − 1)-th
MIPUF node, cki indicates the k-th challenge (input) bit of
the i-th MIPUF node.

3.4 Protecting Network Configuration
The signal routing between any two MIPUF nodes is con-

trolled by a configuration vector. We propose to secure the
configuration vectors using existing MIPUF nodes in the sys-
tem so that the real interconnection configuration remains
hidden. The configuration vector for the interconnection be-
tween node i and i+1 depends on the encrypted result of the
user provided configuration bits using the nodes from node
1 to node i−1, for i > 1. To note that we use MIPUF nodes
in the previous levels to encrypt SE configurations to reduce
correlation between the output of a node and it’s immediate
SEs. An illustrative example is shown in Figure 2.

The user provided configuration is passed to the SEs be-
tween the first two nodes and propagate along the network to
configure the remaining SEs connected to the later nodes.
An attacker or even the user who provided the configura-
tion, cannot obtain information on the real interconnection
between MIPUF nodes without characterizing each node.
Besides, we also significantly reduce the number of bits an

2

Figure 2: Encrypting MIPUF interconnections using exist-
ing MIPUF nodes. Kj is the configuration vector encrypted
by a chain of nodes from node1 to nodej .

user needs to provide. In a key management protocol, our
proposed method could also significantly reduce the commu-
nication cost.

3.5 Security Evaluation of MIPUF

3.5.1 Uniqueness and Reliability
Two most important properties of PUFs are uniqueness

and reliability. Uniqueness means that the responses for a
specific PUF design implemented on different devices should
be significantly different when provided with the same chal-
lenge. Reliability indicates the response should be stable
enough when repeating the same challenge on the same de-
vice. Since our design of MIPUF depends on existing PUF
implementations, our focus is that our multistage intercon-
nection does not compromise the security properties of the
PUF implementation we depend on. We modify the defini-
tion of uniqueness and reliability as follows.

• Inter-configuration variation (uniqueness). How many
MIPUF output bits are different between two differ-
ent configurations of the same MIPUF? Ideally, this
variation should be 50%.

• Intra-configuration variation (reliability). How many
MIPUF output bits differs when re-generated again
from a MIPUF with a specific configuration? Ideally,
this variation should be 0%.

We directly compare these two metrics with intra-chip
variation and inter-chip variation metrics in regular PUF
evaluations. As a proof of concept, we compare our ar-
biter PUF based MIPUF implemented using arbiter PUFs
with regular FPGA-based arbiter PUFs implemented on
five different FPGAs. The results are collected from Xil-
inx Spartan-6 XC6SLX45 platform using the implementa-
tion described in [11].

Figure 3a illustrate the probability distribution of the inter-
configuration variation of a MIPUF. The x-axis is the num-
ber of output bits that are different between two different
interconnection configurations; the y-axis is the probability.
The bars show experimental results collected on 1,225 pairs
of outputs collected from 50 different configurations. Our
experiment results (47.9%) is very close to the ideal case of
50%. Our results even show a slight improvement compar-
ing to the inter-chip variation of arbiter PUFs implemented
on FPGAs (47.0%).

We calculated a 35.37% intra-configuration variation when
no error correction is applied. Consider the intra-chip varia-
tion of 64 128-bit arbiter PUFs implemented on five different
FPGAs is only as little as 2.90%, MIPUF is very unstable
without error correction. The reason is simple and intuitive,
as all MIPUF nodes are connected in such a way that each
node takes the output of the previous node as the input,
an error in the first node could result in avalanche effect

(a) Inter-configuration variation for MIPUF is 47.9%
(Avg = 30.7 bits / 64 bits).

(b) Intra-configuration variation for MIPUF with fuzzy
extractor is 2.67% (Avg = 1.71 bits / 64 bits). Envi-
ronment range from 20 ◦C, 0.95V to 65 ◦C, 1.2V.

Figure 3: Inter-configuration and intra-configuration varia-
tion of a MIPUF with four nodes. Each each node is imple-
mented using 64 32-bit arbiter PUFs. The interconnection
between nodes is designed in a blocking fashion as shown in
Figure 1.

in intra-configuration variation. Thus, we propose to use a
lightweight fuzzy extractor between every MIPUF node as
an error correction mechanism [12], and the resulting intra-
variation is significantly reduced to 2.67%. Since a MIPUF
with n nodes requires n clock cycles to generate the result,
the fuzzy extractors can be shared for all node outputs.

Figure 3b illustrates the probability distribution of the
intra-configuration variation of the same MIPUF. The en-
vironments parameters ranging from 20 ◦C, 0.95V to 65 ◦C,
1.2V. The bars show experimental results collected on 50,000
different random interconnections. Each configuration is
performed on 10,000 challenges and repeated 20 times. Noted
that the major contributors to the intra-configuration vari-
ation are two extremely rare (< 0.5%) case of Hamming
distance greater than 40.

3.5.2 Resilience Against Modeling Attack
Several PUF-based systems are vulnerable to a variety

of modeling attacks [13]. We observed that MIPUF signif-
icantly boost modeling attack resilience by increasing the
system complexity and breaking the system linearity. Table
1 shows the best prediction accuracy on MIPUF vs. a vari-
ety of PUFs implemented on FPGA using attack approaches
described in [13]. We observe that all prediction accuracies
for a single-bit in MIPUF outperforms other designs and are
all close to the ideal case of 50%.

Architecture LR ES DL
MIPUF - 4 nodes 51.33% 59.18% 50.59%
256-bit 4-XOR PUF 97.21% 76.02% 78.42%
1024-bit arbiter PUF 96.57% 98.28% 88.98%
1024-bit 64-ff PUF 58.29% 95.68% 87.70%

Table 1: Best single-bit prediction accuracy on different
PUF architectures using logistic regression (LR), evolution
strategies (ES) and deep learning (DL) attacks out of 100
runs. Each attack uses 100,000 CRPs. Total number of ar-
biter PUF segments used in all architectures are fixed to
1,024.

In addition to high resilience against modeling attacks,

3

MIPUF also allows cheap and fast reconfiguration. Frequent
reconfiguration of MIPUF renders modeling attacks almost
impossible. We investigate this topic in more detail in Sec-
tion 4.3.3.

4. GROUP KEY MANAGEMENT
In this section we show that we can utilize the MIPUF

structure to securely establish a group key management pro-
tocol with three major components, respectively key distri-
bution, key storage and rekeying. Key distribution is the
process to securely deliver the shared secret key to every
authorized group member. After the group key has been
successfully distributed, the most important task would be
to securely store the secret key so that the user could easily
access the key when needed, but an adversarial is forbid to
peek or tamper with the secret key. Lastly, rekeying allows
a group to renew or replace the group key from time to time.

To illustrate our protocol, we first define an IoT model
consists of a control unit with higher computational power
and multiple IoT device/nodes that are constraint by both
computational power and battery life. Each IoT node em-
beds a MIPUF, a hardware hashing function and a very
compact AES implementation.

4.1 Key Distribution
According to the model described above, a well-designed

group key distribution protocol is proposed. The protocol
is shown in Protocol 1. For each node, a group key can be
delivered securely with exchange of two messages.

4.2 Key Storage
After the key distribution, the group key can be extracted

from the MIPUF when the correct challenge and intercon-
nection configuration are provided. Unlike other crypto-
based key management systems, we do not directly store
the group key in the memory. Instead, the group key is ex-
tracted on the fly from the group key hint pi. We believe
this approach is secure because an attacker can only obtain
the real group key if he has access to both the storage (con-
taining pi, fi and cγii) and the MIPUF (Fγi , compromising
either the storage or the MIPUF does not compromise the
security of the whole design. Also, the group key is only
used upon receiving or transmitting group messages, thus
storing the real key using low-power MIPUF is also highly
energy efficient.

4.3 Rekeying
Group keys need to be regenerated, redistributed or up-

dated whenever there is a dynamic change to the group
to preserve security. One important motivation to rekey
is that groups are not always static. When a member leaves
the group, it should not be able to decrypt future group
communications (forward security); when a new member
joins, it should not be able to decrypt past group commu-
nications (backward security). Group key should also be
completely rekeyed when potential leakage is detected for
security considerations. Here we discuss all three possible
cases.

4.3.1 New Member Joins the Group
Without loss of generality, we assume a new IoT node Nα

intend to join a group G, Nα /∈ G. For efficiency consid-
erations, redistributing a new key to all group members is

Protocol 1 Group Key Distribution Protocol

Inputs. A list of group member in group G = {N0···Nn} ⊆ N
n being the total number of IoT nodes in the group. A
random group key keyg.

Goal. Securely deliver keyg to all Ni ∈ G.

1. Preliminary Phase

(a) Before the deployment of an IoT node, the con-
trol unit assigns a unique ID (Ni) to it. Ini-
tially the node derives the interconnection con-
figuration γi = H(Ni) from Ni and generates
a CRP (cγii , rγii) using the MIPUF Fi where
rγii = Fγii (cγii).

(b) The control unit securely store the tuple (γi, c
γi
i ,

rγii) in the database, and node Ni securely stores
cγii and γi.

2. Key Delivery Phase

(a) When a group G is formed, the control unit first
check if all group members exists based on the
unique ID. If not, the protocol is aborted.

(b) For IoT node Ni ∈ G, the control unit generates
a random new configuration γ′i.

(c) For IoT node Ni ∈ G, a group key hint pi = rγii ⊗
keyg and a new configuration hint fi = rγii ⊗ γ

′
i

are generated.
(d) An encrypted message msgki contain-

ing pi and fi is transmitted using uni-
cast to each group member Ni ∈ G.
msgki = {Erγii (Ni‖pi‖fi)‖H(Ni‖cγii)}, “‖”
indicates the concatenation operation, E is the
encryption operation using AES and H is a
hashing operation.

3. CRP update Phase

(a) Upon receiving msgki , IoT node Ni first decrypts
the message using rγii : Drγii

(Erγii
(Ni‖pi‖fi)), D

being the AES decryption operation. Ni verifies
the validity of the message by comparing the hash
H(Ni‖cγii). If there exists a mismatch in the hash,
report error to the control unit.

(b) The group key keyg and the new interconnection
γ′i are derived from pi and fi decrypted from the
decrypted msgki .

(c) Ni generates a new CRP (c
γ′i
i , r

γ′i
i) where c

γ′i
i =

H(cγii), r
γ′i
i = Fγ

′
i
i (c

γ′i
i). Ni sends an encrypted

message msgui = Erγii
(Ni‖cγ

′
i
i ‖r

γ′i
i) back to the

control unit.
(d) The control unit decrypt msgui using rγi and up-

dates the database by replacing the tuple (γi, c
γi
i ,

rγii)with(γ′i, c
γ′i
i , r

γ′i
i). If the control unit has

not received an update message msgui after some

predefined timeout or c
γ′i
i = H(cγii), an abort is

called.

expensive and inefficient. Instead, we propose to use the
current secret to encrypt the new group key and this pro-
cess is leakage free. Specifically, the control unit sends out a
message msgjoin = {Ekeyg (key′g)} to ∀Ni ∈ G. The existing
group members calculate and store the new group key hint

4

p′i = rγii ⊗ key′g and deletes key′g upon receiving and de-

crypting msgjoini . The new member will have to complete
the whole key distribution process described in Section 4.1.
Backward security is preserved using this method since the
new member has no information about the old group key.

4.3.2 Existing Member Leaves the Group
Removing an existing member from the group is more

complicated than adding a new member. Here we propose
to divide group G into m subgroups gj ⊂ G = {g1 ···gm}, 1 ≤
j ≤ m. All nodes in the same subgroup share the same
interconnection configuration γgj . Again, without losing
the generality, we assume an IoT node Nβ ∈ gj ⊂ G in-
tend to leave the subgroup where all members in the sub-
group use the same MIPUF interconnection configuration
γj . The control node first multicast/broadcast m − 1 mes-
sages msgleavei = {Eγi(key′g‖H(γi)} containing the new key
to all the subgroups encrypted using the configuration γi, i 6=
j, 1 ≤ i ≤ m. Upon receiving the message, each node first
decrypts the message using its own configuration γi and
check if H(γi) matches the one in the decrypted msgleavei . If
so then the decrypted new group key key′g is valid, otherwise,
discard the message. No member of gj including the leaving
node have any knowledge of the configurations of other sub-
groups, thus incapable of decrypting the message correctly.
The control unit should then perform unicast communica-
tions to all members of gj by distributing the new group key
key′g and a new configuration γ′j to replace γj .

4.3.3 Complete Rekeying
MIPUF can still be modeled if a significantly large enough

set of CRPs is collected. However, MIPUF can be reconfig-
ured to neutralize modeling attacks by completely remap
the input-output mapping. We propose to perform a full
rekeying once the total number of CRPs generated exceeds
a calculated sample complexity lower bound that equals to
the sufficient training set size to break the MIPUF. Equa-
tion 1 describe a sample size lower bound in terms of the
IPN model parameters, where m is the number of nodes in
MIPUF and n is the maximum number of PUFs in a MIPUF
node. k = V C(F) where VC is the Vapnik-Chervonenkis-
dimension and F is largest single PUF in MIPUF. δ is the
failure probability and ε is the learning error.

Sample complexity ∼
(m · k +m) · n+ ln(1

δ
)

ε
(1)

5. EVALUATION

5.1 Security Analysis
We make the following assumptions for our security analy-

sis. The physical security of the MIPUF is secured; however,
an attacker is allowed query the CRPs as much as needed.
The wireless channels used for communication are not se-
cured after the initial preliminary phase. The hash function
and compact AES on each node are secure. The control unit
key database is secure. We summarize our security analysis
against several popular attacks as below:

Eavesdropping Attack: During the key distributing
and rekeying process, all messages containing γi, c

γi
i , rγii

or keyg are encrypted by AES. Thus eavesdropping attack
is invalid.

Man-in-the-middle Attack: Before updating the new
CRP in 3c in Protocol 1, the new challenge is a one-way hash

of the previous challenge which is checked by the control
unit, thus render the attack useless.

Replay Attack: Neither the IoT node nor the control
unit would be able to correctly decrypt a message encrypted
using a previous response since old responses are discarded
after the update.Thus the hash check in 3a, 3d in Protocol
1 would fail during key distribution. Forward security in the
rekeying process is designed to protect the system from such
attacks.

Impersonation Attack: Based on our assumption, the
preliminary phase is secure thus the initial key and MIPUF
configuration are secured. Also, the modeling attack re-
silience and the reconfigurability of MIPUF prevents an at-
tacker to impersonate an IoT node even if we allow him to
query the CRPs.

5.2 Overhead Evaluation
In this section we assume that there are N nodes in the

group and the group is split into M subgroups. The MIPUF
we use in each IoT nodes takes an a-bit challenge, a b-bit
configuration vector and generates a c-bit output (assuming
b ≥ c). Node ID is a l-bit vector. The hash function hashes
any input to an a-bit string. The group key has length
of c-bits. The random number generator cost ER units of
energy per operation. The energy consumption of MIPUF,
hash function, XOR operation and the very compact AES
are EP , EH , EX and EA.

Communication Cost: The length of messages: msgki ,
msgui , msgjoin and msgleavei are: a + b + c + l, a + c + l,
a+c and a+c. Thus the total number of messages need
to be sent for key distribution and node join/leave rekeying
are: N, 3 and (2N

M
-2) + (M-1). For node leave rekeying,

minimum cost is achieved when M =
√
N .

Storage Overhead: The control unit stores the Node
ID, CRPs and the current configuration of all nodes; thus
the storage overhead at the control unit is N ·(a+b+2c+l)
bits. Each IoT node stores the Node ID, current challenge,
current configuration and the group key hint which has a
storage overhead of a+b+c+l bits.

Energy Cost: The control unit spends 2EA +2EH +
2ER + 2EX units of energy to distribute the group key to
one node. Each node spends 2EA + 2EH + EP + 2ER to
receive the key and update the CRP. During member join
rekeying, the control units spends EA + ER units of energy
to update the group key to existing members and 2EA +
2EH + 2ER + 2EX to the new member. The new node
spends 2EA + 2EH + EP + 2EX and old members spend
EA+EX units of energy respectively. During member leave
rekeying, the control unit spends (M − 1) · (EA +EH +ER)
units of energy to update the group key to existing members
that are not in the same subgroup as the leaving node and
(N
M
− 1) · (2EA + 2EH + 2ER + 2EX) to the update all

members in the same subgroup. All members that are in
and not in the same subgroup as the leaving node spends
(M − 1) · (EA + EH + ER) and EA + EH units of energy.

We compare our global energy consumption to two other
key management protocols: Localized Encryption and au-
thentication protocol (LEAP) [2] and Elliptic Curve Public
Key Cryptography (ECPKC) [4] in simulation using the pa-
rameters described in [4] for a fair comparison. The com-
parison for simulated results for global energy consumption
for three key management schemes can be seen in Figure
4. LEAP uses significantly much more energy than both

5

ECPKC and our proposed scheme as it grows quadratically.
The global energy consumption of both ECPKC and our
proposed scheme grows linearly. Since our proposed de-
sign uses low-power MIPUF instead of energy-hungry ECC
to achieve power efficiency. We observe that our proposed
scheme uses about 47.33% less energy for key distribution.

Figure 4: Simulated global energy consumption (J) vs. total
number of IoT nodes under the settings introduced in [4].

5.3 Implementation Results
We implemented our key management hardware support

for IoT nodes on Xilinx Spartan-6 LX45 FPGAs to mea-
sure the area and power. Our implementation consists of a
MIPUF with three nodes; each node consists of 128 32-bit
Arbiter PUFs. The fuzzy extractor was implemented based
on [12], the hash function the AES module are implemented
based on [14] and [15]. Table 2 shows the area and power
overhead break down of our implementation. Our MIPUF
seems to be more expensive due to FPGA-based arbiter PUF
implementations are known to be inefficient. Both area and
power overhead of MIPUF and our hardware support are ex-
pected to be significantly reduced if we implement MIPUF
on ASIC. We are also expected to see further improvement
if MIPUF is built using more efficient strong PUFs.

Our design MIPUF SHA-1 AES Overall
Flip-flops 1,626 1,151 598 3,401

LUTs 7,028 1,590 501 9,219
Slices 3,717 544 222 4,553

Block RAMs 0 0 3 3
Power(mW) 123.7 30.4 16.2 175.7

Table 2: FPGA resource and power characteristics of the
hardware support of our proposed key management scheme.

6. CONCLUSIONS
In this paper, we first proposed a novel PUF structure:

MIPUF that is both secure and reconfigurable. We show-
cased the uniqueness, reliability, modeling attack resilience
and reconfigurability of MIPUF. We then proposed a group
key management scheme in IoT consists of key distribution,
key storage and rekeying based on MIPUF. Security and
overhead analysis on the scheme show that our design is not
only secure against multiple attack methods but also low
power. Our simulation result indicates that our proposed
scheme spends 47.33% less energy compared to the state-of-
the-art crypto-based scheme ECPKC [4] since we use low-
power and energy efficient MIPUF instead of power-hungry
ECC.

7. REFERENCES
[1] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A

novel batch-based group key management protocol
applied to the internet of things,” Ad Hoc Networks,
vol. 11, no. 8, pp. 2724–2737, 2013.

[2] S. Zhu, S. Setia, and S. Jajodia, “Leap+: Efficient
security mechanisms for large-scale distributed sensor
networks,” ACM Transactions on Sensor Networks
(TOSN), vol. 2, no. 4, pp. 500–528, 2006.

[3] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key
management systems for sensor networks in the
context of the Internet of Things,” Computers &
Electrical Engineering, vol. 37, no. 2, pp. 147–159,
2011.

[4] W. Abdallah, N. Boudriga, D. Kim, and S. An, “An
efficient and scalable key management mechanism for
wireless sensor networks,” in ICACT, pp. 480–493,
IEEE, 2015.

[5] M. T. Rahman, F. Rahman, D. Forte, and
M. Tehranipoor, “An aging-resistant RO-PUF for
reliable key generation,” IEEE Transactions on
Emerging Topics in Computing, vol. 4, no. 3,
pp. 335–348, 2016.

[6] D. Mukhopadhyay, “PUFs as promising tools for
security in Internet of things,” IEEE Design & Test,
vol. 33, no. 3, pp. 103–115, 2016.

[7] M. Huang, B. Yu, and S. Li, “PUF-assisted Group
Key Distribution Scheme for Software-Defined
Wireless Sensor Networks,” IEEE Communications
Letters, 2017.

[8] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas,
“Physical unclonable functions and applications: A
tutorial,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1126–1141, 2014.

[9] J. Miao, M. Li, S. Roy, and B. Yu, “LRR-DPUF:
Learning resilient and reliable digital physical
unclonable function,” in ICCAD, pp. 1–8, IEEE, 2016.

[10] D. H. Lawrie, “Access and alignment of data in an
array processor,” IEEE Transactions on Computers,
vol. 100, no. 12, pp. 1145–1155, 1975.

[11] J. X. Zheng, D. Li, and M. Potkonjak, “A secure and
unclonable embedded system using instruction-level
PUF authentication,” in FPL, pp. 1–4, IEEE, 2014.

[12] C. Herder, L. Ren, M. van Dijk, M.-D. Yu, and
S. Devadas, “Trapdoor computational fuzzy extractors
and stateless cryptographically-secure physical
unclonable functions,” IEEE Transactions on
Dependable and Secure Computing, vol. 14, no. 1,
pp. 65–82, 2017.

[13] U. Rührmair, J. Sölter, F. Sehnke, X. Xu,
A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber,
W. Burleson, and S. Devadas, “PUF modeling attacks
on simulated and silicon data,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 11,
pp. 1876–1891, 2013.

[14] I. Kawazome, “Secure Hash.”
https://github.com/ikwzm/SECURE HASH, 2013.

[15] P. Chodowiec and K. Gaj, “Very compact FPGA
implementation of the AES algorithm,” in
International Workshop on Cryptographic Hardware
and Embedded Systems, pp. 319–333, Springer, 2003.

6

